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Introduction. It is widely known that an evaporating liquid f i l l  is a very effective way to cool a hot solid surface 

because of its small thickness and the closeness of the free-surface temperature to the saturation temperature. For this reason 

thin films are widely used in technology and the study of the processes and phenomena affecting the temperature gradient across 

the f i l l  is an important problem. 

The flow of an isothermal liquid film with a smooth free surface down a vertical plane is unstable at all Reynolds 

numbers [1]. The growth of long-wavelength perturbations is limited by nonlinear effects and hence finite-amplitude waves are 

formed. The calculation of such flow regimes using the full set of Navier-Stokes equations is a difficult problem. Two 

different approaches have been developed using a small parameter inversely proportional to the wavelength, which lead to 

simplified equations of motion. The first approach [2] leads to a single evolution equation for the perturbation of the free 

surface. It is derived by expanding all quantities appearing in the original Navier-Stokes equations and the boundary 

conditions, except for the film thickness, in powers of the small parameter e. A linear problem is then solved for each order 

and an evolution equation is obtained after substitution into the kinematic boundary condition. This approach is limited to small- 

amplitude disturbances and corresponds to small Reynolds number (Re < 1). The second approach [3] averages the equations 

of motion across the liquid layer. The results [4-6] show good quantitative agreement with the known experimental data over 

a wide interval of Reynolds number. 
The stability of the wave-free flow of evaporating and condensing f i l l s  down a vertical plane was considered in [7-10]. 

Evaporation is an additional destabilizing effect which broadens the region where long-wavelength perturbation increase in time. 

Condensation has the opposite effect and in this case there is a critical Reynolds number below which the wave-free flow 

smooth free surface of a condensing film is stable. The nonlinear growth of unstable perturbations on evaporating the 

condensing f i l l s  was considered in [11] using an approach analogous to [2] for an isothermal film, which is correct for small- 

amplitude perturbations. The purpose of the present paper is to develop an integrated approach to the study of waves on an 

evaporating liquid film without making the assumption of small amplitude. 

Derivation of the Basic Equations. We consider the flow of a thin layer of viscous liquid down a hot surface in the 

presence of evaporation from the free surface of the liquid. The flow and the basic notation is shown schematically in Fig. 1. 

The boundary conditions on the free surface are [11]: 

.r _= p (v - v (~ n = p ~  (v ~ . v ")) n, 

l {r + [(v (v~ - v (~ n]~/2 - [(v - v (~ n]2/2} + ~.VTn - k(v)VT~ + 

+ (v  - v " ) )  - ( v  'v) - v"))  = 0 ,  

J (v - v (v)) n - (x - "t (v)) rm + p - p(V~ = 2Ho, 

J (v - v (v)) t - (x - x (v)) nt = 0, (v - v (v)) t = 0, 

n =- ( -Oh/Ox,  1) /N,  t -= (1, Oh/tgx)/N, 2H - -02h/Ox2/N3, 

N = q l  + (Oh/Ox) 2. 
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Fig. 1 

Here J is the mass flux as a result of evaporation from a unit area of the surface per unit time, h is the instantaneous thickness 

of the film measured from the solid surface, a is the surface tension, r is the heat of  vaporization, v (i) is the velocity of the 

particles on the free surface; quantities with superscripts correspond to the vapor and quantities without superscripts correspond 

to the liquid; v -= (u, v) is the velocity vector, T is the temperature, p is the pressure, r is the viscous stress tensor, o is the 

density, X is the thermal diffusivity. The first equation represents the definition of the mass flux J and its conservation law, 

the second, third, and fourth equations are the conservation laws for the energy and the two components of  the momentum,  

respectively. 

Here and below the temperature dependence of the physical parameters of  the liquid will be neglected (we consider 

small temperature differences). Taking the limits p(v)/p _, O, /z(v)//x --, 0 and k(v)/X --, 0 (/~ is the dynamical viscosity), the 

equations of  motion and the boundary conditions can be written in dimensionless form as: 

_ _  _ _  , 0 ~  ~ Op" ~ 02u" i d." 1 ~ + u* ~ + v . . . .  + -- + -- (~/2 + 3 
Ot" Ox* Oy* Ox* ~ee Ox .2 ~ Re ) ' 

x 

o~--: ~=o, ~+ --+~*--=-- ax* Oy" e Re Pr ~ Oy .2 + Ox .2 ) 

* * T *  y *  u = v  = 0 ,  = i, = 0 ,  

:* . o/; . oh' y* h * ( x * ,  F ) ,  - - = V  ------R - - ,  = 
e KUm Ot* OX* 

j.3 2 Oh" dT' I OT' 
- -  + - - +  

d'* + (Kura D)2X Ar OX* dX' -N Oy' 

+ ~ L  ~ k ~  ) - l  ---ox. k o y + ~  =o,  

--(-~umfn ~ o ~ [ 0 ;  d ~' ~ )  - 1 - - -  + + = 
ox'~V 

r~e~'~ o ;  ~' o~ o~-- ko/ ox') ko.  ) = o, 

Ku.  = Re Pr Ku, N = (1 + a2 (Oh./Ox.)~)v2, 

where u* = U/Uo; v* = v/(eUo); y* = y/ho; x* = ex/ho; t* = eUot/ho; J* = horJ/XAT; AT = T w - Ts; T* = (T - Ts)/AT; 

p = p/Puo2; Re = uoho/v; Pr = v/k; Ku = r/CpAT; • = 2r/uo2; Fi = (a/p)3/gv4; D = p(v)/p; u0 = gh02/3v; e = ho/L; L 

is the scale of  the wave motion along the x coordinate, T w is the wall temperature, T s is the vapor saturation temperature, and 
k is the thermal conductivity. 

We consider long-wavelength perturbations (e < < 1). Since x is usually very large, the original equations can be 
simplified considerably. After integration perpendicular to the layer they take the form 
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Here the asterisks on the dimensionless quantities have been omitted and the quantity e has been set equal to unity. We note 

that in spite of the fact that we have discarded the convective terms in the heat equation, the inclusion of these terms in the 

first equation of (1) is correct, since the term in the parentheses in this equation is small. We also note that the term involving 

the capillary pressure should be kept if Fi - ReS/e 6, which is correct for a large number of liquids. Hence it follows that (1) 

is correct for the evolution of perturbations if e < < rain (1, Re Pr) and Fi - Re5/e 6. 

We assume the velocity profile u(x, y, t) = (3q(x, t)/h(x, t)) (y/h(x, t) - y2/2h2(x, t)) and the condition T ly =h = 0 

on the free surface. Wave-free flow corresponds to the solution q = ~3, h = # = (1 - 4x/3 Kum0) TM, where Kum 0 is 

calculated in the initial cross section of the flow. Hence we have an unperturbed solution that is inhomogeneous in space. The 

problem reduces to the linear stability analysis of this solution and to the study of the possible nonlinear evolution of unstable 

perturbations. Making the substitutions q ---, ~3  + q, h --" 'I' + h in (1), we obtain a system of nonlinear partial differential 

equations whose coefficients depend on x. Rigorous mathematical approaches, and hence numerical algorithms, are not available 

for perturbations evolving in both space and time. Therefore we consider the case of small temperature differences (KUm 0 >> 
1) and the linear stability and different nonlinear solutions which are periodic in x, over the background of a slowly-varying 

unperturbed flow. Hence we introduce two different scales of length in the x direction. The first scale is determined by the 

variation in ,I,. This approach (the quasi-parallel approximation) is often used in problems with inhomogeneities in the spatial 

variable and is correct when 10h/0xl - e > > I d~/dxl = 1/(34, 3 Kum0), i.e. the wavelength X of the periodic perturbations 

must he much smaller than the typical distance over which the unperturbed solution changes significantly. 

�9 With the help of the transformation x --, (Fi/9 Re5)l/6x, t ---, (Fi/9 Re5)l/6t, we obtain the following basic system of 

equations 

8 0 4  



0--t + 1,2 Ox "h-+---O + -K  \ - -  + 3~s (h + q,)~ 

/ ion, �9 qb + 3  + h  = Z h - ( Z + l , 5 / K )  (h+o) 2 I ~ 

2 (q + ~ 3 ) /  -- 

2 A h / 
ox (sx3 3 ) 

+ + - ; , 3  ' + = - ;  , + J; ' (q)  = ~ 
D (KuO,) 2 (* + h) 2 3 

Here the thickness h and the flow rate q are assumed to be periodic in x; Z = (81 Fi/Rell)l/6; K = (9 Re5/Fi)l/6KUm0; the 

linear scale of all quantities and Re is defined by the initial cross section of the flow; r characterizes the distance from the 

initial cross section (the large-scale spatial variable) and varies from 1 to 0 for evaporation (K > 0) and from 1 to oo for 

condensation; (q) = (1/)x) [ q (x, t)dx is the flow rate averaged over the wavelength. To better understand the physical 
0 

meaning of the parameters Z and K, we note that they are simply related to easily measurable quantities: Re/Ka = 811/11/Z6/I 1 

and Pr Ku = KZ/3 (Ka = Fi t/11 is the Kapitza number). 

Wave-free flow corresponds to the solutions q = 0, h = 0 of (2). To study its stability against spatially periodic 

perturbations - exp [ice (x - fl0] we linearize the system of equations (2). Then from the condition for the existence of a 

solution it is not difficult to show that perturbations with o~ < Cgneut grow in time, while those with c~ > %cut damp out. The 

expressions for Ceneut and the velocity ~neut of neutral perturbations are quite complicated 

2 
(Xneut 

A1 = 2 , 4 ~  2, 

A t C  1 - B 2 

{'~neut = A2 + C ~  ' 

ff~2eut - Alg)neut - B1 --- [(~2eut - Al~neut - BI) 2 + 4D1A2C1] 0'5 

- 2 D 1  

C1 = - l / K d O  2, A 2 = - 0 , 1 / K ~  2 + Z / ~  2, D1= - 3 ~ ,  

B1 = - 1 ,2 t~  4 - 2 / ( D ~  2 (Ku~ 

B2 = - 3 Z  - 1 ,4 /K  + 7/(3KSqb u) - 4 / (3DK~ 6 (Ku~ 2) 

(3) 

and are difficult to use analytically. Since Kum 0 > > 1 for the plane-parallel approximation to be applicable, (3) can be 
simplified 

f~n~ut = 3~ 2, 2 " (4) c%eu t __. ~3/2  __. [qb6/4 + Z/ (3K~S)  ]0.s 

For an evaporating film (K > 0) only one of the roots O~neut is chosen in (3) and (4), while for condensation (K < 0) there 

exists a critical value of Z for the onset of wave formation and both branches of ~neut are physically meaningful. 

To estimate the validity of the assumptions made in deriving (2), we take the wavelength of neutral perturbations as 
the longitudinal scale L and obtain 

Gt = 1 / (3~  3 I Ku~  ~ ~ = (9ReS/Fi)l/',~c%~u,/27t .~: G2 = min (1,1/(~3Pr Re)). 

The neutral stability curves, phase velocities, and the quantities G1, e, and G 2 are shown in Fig. 2 (curves 1-3) as 

functions of the parameter ~ for PrKu = 100 and 1000 (a and b, respectively), calculated from (3) (solid curves) and from 

the approximate formula (4) dashed curves). The physical characteristics (Pr = 1.73, Ka = 13.75, and D = 6.24.10 -4) 

correspond to water at 100~ and Re/Ka = 0.5. As clearly shown by the graphs, (4) is quite accurate and differences show 

up only for comparatively small ~, where the plane-parallel approximation becomes inapplicable (e < G1). 

It was verified that the calculated results are within the limits of applicability of the approximations used. 

The points in Fig. 2 correspond to the results of [9], where the neutral wave-number lines were calculated using the 

O r r -  Sommerfeld equation for the problem. The agreement is satisfactory, in our opinion and supports the correctness of the 
integrated approach. 

Numerical C a l c u l a t i o n  o f  the Nonlinear Re~mes. We consider solutions of (2) of the form q = q(~), h = h(~), 

= x - ct (c is the phase velocity) which are periodic in the coordinate ~ with period k = 2a'/ee (or is the wave number). Using 
the t'mite Fourier series representation 
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(q, h) = ~ (q,,, hn) exp [ian~ ], (5) 
/ I = - N  

after substitution into (2) we obtain a system of nonlinear algebraic equations. The Fourier harmonics of the nonlinear terms 

in (2) were calculated using the pseudospectral method. The phase velocity was determined by using the invariance of (2) to 

shifts in the origin of the coordinate system, and hence the phase of one of the harmonics in (5) can be assumed as given. The 

Newton-Kantorovich iteration method was used to solve the nonlinear system of algebraic equations for different values of 

the parameters Z, K, and ~. 

The results of [5, 6] for flow of an isothermal film were used to test the algorithm and also as initial data for large 

values of K. Using a small stepsize in the parameters, the solution was calculated over a wide region of the parameter space. 

The calculation was tested by verifying that the last harmonic of (5) satisfies the condition 

IhNI/sup Ih~l < 10 -3. 
- N  <n<N 

Calculated Results for  Nonlinear Regimes. There are three external parameters in the problem: Re/Ka, PrKu, and 

r For fixed values of these parameters the calculations show that there exist different one-parameter families of nonlinear 

steady-state travelling-wave solutions. Inside each of the families, near the singular points, the parameter can be taken as the 

wave amplitude, while far from the bifurcation points the wave number a (a = 2r/X, where X is the wavelength of the 

nonlinear solution) can be used as the parameter. 

We consider only two of the large number of possible families of solutions. The first family of waves appears when 

the trivial solution h = q = 0 becomes unstable. For cI, not too close to unity this wave solution exists in the region from a 

= C~neut to  very small a ,  as considered in the present paper. In Fig. 3 curves 1-3 show the amplitudes of the solutions of the 

first family as functions of the wave number for PrKu = 1000, 100, and 50, respectively. Here RelKa = 015 and r = 1, and 

the amplitude is defined as the difference between the maximum and minimum thicknesses (A = [hma x - hmi n 1). The 

amplitudes for waves of the second family are shown by curves 1'-3' .  Waves of the second family appear when waves of the 

first family with double the spatial period become unstable. They have also calculated up to very small values of a for r "~ 

1. 
Other families of solutions were not considered because it is not possible to discuss all solutions and also because the 

results for an isothermal film (PrKu = ~ )  [5, 6] show that except for wave solutions of the first two types, all of these 

solutions are unstable over the entire region of wave numbers. 

It follows from Fig. 3 that the amplitudes of  waves from the same period increases with increasing temperature 

difference and also that the function A(a) is qualitatively similar for the same family for different values of P rKu .  

Figure 4 shows the wave amplitude as a function of the parameter r  which models the growth of the wave structure 

in the flow along an evaporating film. Here Re/Ka = 0.5 and curves 1 and 2 correspond to waves of  the first family with 

= 0.8 and PrKu = 1000 and 100, respectively. Curves 1' and 2' correspond to waves o f  the second family with a = 0.3 and 

with the same values of PrKu and Re/Ka. The two unconnected branches of curves 1 result from the behavior of Otneut(~) in 

Fig. 2: when 0.44 < r < 0.84 the neutral wave number Otneut < 0~8 and perturbations with a = 0.8 lie in the linear stability 

region. 
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The build-up of finite-amplitude waves in an evaporating f i l l  is determined by two basic factors: 1) the decrease in 

the intensity of the wave process with decreasing Reynolds number, as in the case of an isothermal f i l l ,  and 2) the opposite 

tendency due to the presence of a phase transition on the interface. The competition between these two effects explain the 

extrema observed in Fig. 4. Beginning with a certain 4, the wave amplitude increases rapidly and for r < ,b c (o~, PrKu) the 

nonlinear wave regime does not exist. To see more clearly what happens when ~ = r Fig. 5a, b shows typical thickness 

profiles corresponding to the parameters of curves 2 and 2' of Fig. 4. Here the dashed lines correspond to the value of r for 

which the solution is given. In Fig. 5a, b the profile 1 is for r = 0.8, while profile 2 is for a small neighborhood about r = 

r Upon further movement along curves 2 and 2' of Fig. 4 there is a rapid growth in the maximum film thickness approaches 

zero, corresponding to the formation of a "dry" spot. 

We conclude from the above results that the most important effect caused by waves in the formation of dry spots with 

decreasing q~. A detailed study of this effect is important in applications because it limits the maximum possible heat flux that 
can be carried off from a hot surface. 

Figure 6 shows the calculated quantity r 3 Re/Ka --- (Rei)c/Ka (Re i is the "local" wave-averaged Reynolds number) 

for different values of PrKu. It is not difficult to obtain from these results the minimum flow rate and f i l l  thickness for which 

the wave structure is possible for a given liquid. 

When �9 < ~c, dry spots form, as shown above. Because of the internal parameter ~ and the existence of different 

families of waves, an interval of ~c exists at fixed PrKu. The calculations show that the lower boundary of ffc is usually 

determined by long waves belonging to the second family, while the upper boundary is determined by short waves of the first 
family. 

It would be interesting to test the theoretical results by comparing them with experiments on the formation of dry spots 

in evaporating liquid films. Because of the smallness of the Reynolds number this problem is quite difficult to study 

experimentally. We know of only one experimental paper [12] devoted to this problem. Unfortunately, the measurements were 
done only on insufficiently heated liquids. 
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Conclusions. The growth of unstable long-wavelength perturbations on the surface of an evaporating liquid f i l l  can 

lead to different steady-state travelling-wave flow regimes. The wave flow regime exists only up to certain critical values of 
the film thickness, and furthermore there is the apparent formation of dry spots. As the film thickness changes during the 

evaporation process from the initial value to the critical value the amplitude of steady-state waves passes through a minimum 
and increases rapidly near the critical film thickness. The critical film thickness depends on the temperature drop across the 

f i l l s  and also the wavelength and type of wave regime. By controlling these parameters the instant of film rupture can be 

delayed. 
The approach developed here for waves on the surface of an evaporating f i l l  can easily be extended to nonequilibrium 

evaporation from a free surface and the Marangoni effect, which is important for thin f i l l s  when the temperature of the free 

surface can vary. 
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